

### Q1'24 Council Meeting

Jan 18, 2024

Antoine Tixier, Matt Hallowell



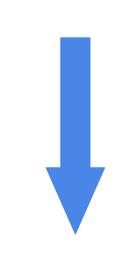
## Agenda

- Context
- ChatSafetyAl Updates
- Mode Overview
- Next Steps
- Discussion

This call will be recorded.



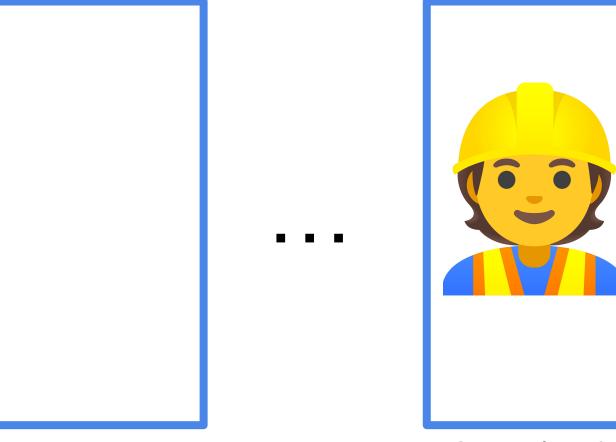
# Large Language Models (LLMs)


- Trained to predict the next word on gigantic amounts of raw text.
- Side-effect: knowledge & intelligence! Can: retrieve info, solve problems, translate, summarize, write code, draft emails, adopt a persona, converse, follow instructions, learn tasks on-the-fly...
- Examples: OpenAl's GPT-4, Google's Bard, Meta's Llama-2...
- Limitations:
  - Cost hundreds of millions to develop
  - General purpose
  - Hallucination



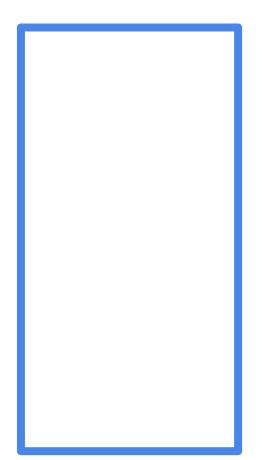
## LLMs Customization

General-purpose "foundation" LLMs (GPT-4, Bard, Llama-2)








### ChatSafetyAl

Custom persona and knowledge, pre-engineered routines (sets of actions, API calls, output formats), access to exterior models and data.

Industry verticals









# ChatSafetyAl Updates

- Based on GPT-4 Turbo (11/06): 1.76 T parameters (10x GPT-3!)
- Knowledge update: HECA, energy method...
- Follow-up question suggestions
- New pre-engineered routines ("modes"):
  - Regulations: + 8 Canadian provinces
  - Safety Climate Analysis
  - Presentation
  - Prejob Brief Summarization / Paperwork



# ChatSafetyAl Updates

- Access to the latest predictive supermodels and risk assessment (2023 training data updates).
- Modes are now automatically detected for each query:
  - Start with one mode (e.g., prediction) and follow-up in another (e.g., regulation), in the same conversation.
  - No more mode off-topic rejections.
  - Streamlined interface similar to ChatGPT's.

## Mode Overview



- Free chat
- Regulations
- Predictions
- Safety Climate
- Presentation
- Prejob Brief

ChatSafetyAI is a chatbot, not a search engine. Don't be afraid to interact in a human way!

- Hey, nice to meet you, buddy. It's my first time using you.
- Nice to meet you too! I'm here to help with any construction safety questions or concerns you might have. Feel free to ask me anything related to construction safety, and I'll do my best to assist you. What can I help you with today?
  - How should I use you? What can u do for me?
  - As a virtual construction safety expert, I can assist you in several ways:
- 1. **Regulations**: If you have specific questions about safety regulations, I can query the appropriate database to provide you with precise information. For example, I can tell you at what height fall protection is required according to OSHA standards.
- 2. **Prediction**: If you describe a jobsite situation to me, I can analyze it and predict the most likely injury characteristics that could occur, helping you to prevent incidents.
- 3. **Safety Climate Survey Analysis**: If you have conducted a safety climate survey and can provide the responses, I can analyze them to give you insights into the safety culture of your workplace.
- 4. **Presentation**: I can turn our conversation into a slideset presentation, summarizing the key points we've discussed.
- 5. **Prejob Safety Brief**: If you provide me with the transcription of a prejob safety meeting, I can summarize it

### Free Chat



- Any query that does not trigger a mode.
- Response based on ChatSafetyAl's own knowledge, in a free format, without calling any database, model, or predefined routine.



How to best define direct controls?

- Direct controls are specific safety measures that are designed to mitigate exposure to high-energy hazards on a construction site. They are characterized by three main criteria:
- 1. Targeted to the High-Energy Source: The control must be specifically designed to address the particular high-energy hazard. For example, a set of egress stairs is a direct control for the hazard of excavation cave-ins.
- 2. Effectively Mitigates Exposure to High Energy: The control must be capable of preventing or significantly reducing the risk of injury from the high-energy source. An exclusion zone around a suspended load is an example, as it prevents workers from being struck in the event of a load drop.
- 3. Works Even if Someone Makes a Mistake: The control must function reliably and not depend on perfect human performance. A fall arrest system is a direct control because it will stop a worker from falling even if they slip or trip.

Direct controls are a key component of High-Energy Control Assessments (HECA), which focus on the presence of effective safety measures rather than the absence of incidents.

What are some examples of high-energy hazards on construction sites?

How is the HECA score calculated?

Can you explain the difference between direct and indirect controls?

## Free Chat



Page 12 Demo (3 mins): <a href="https://vimeo.com/903770404">https://vimeo.com/903770404</a>

## Regulation Mode



 Triggered whenever asking about rules, requirements, etc.

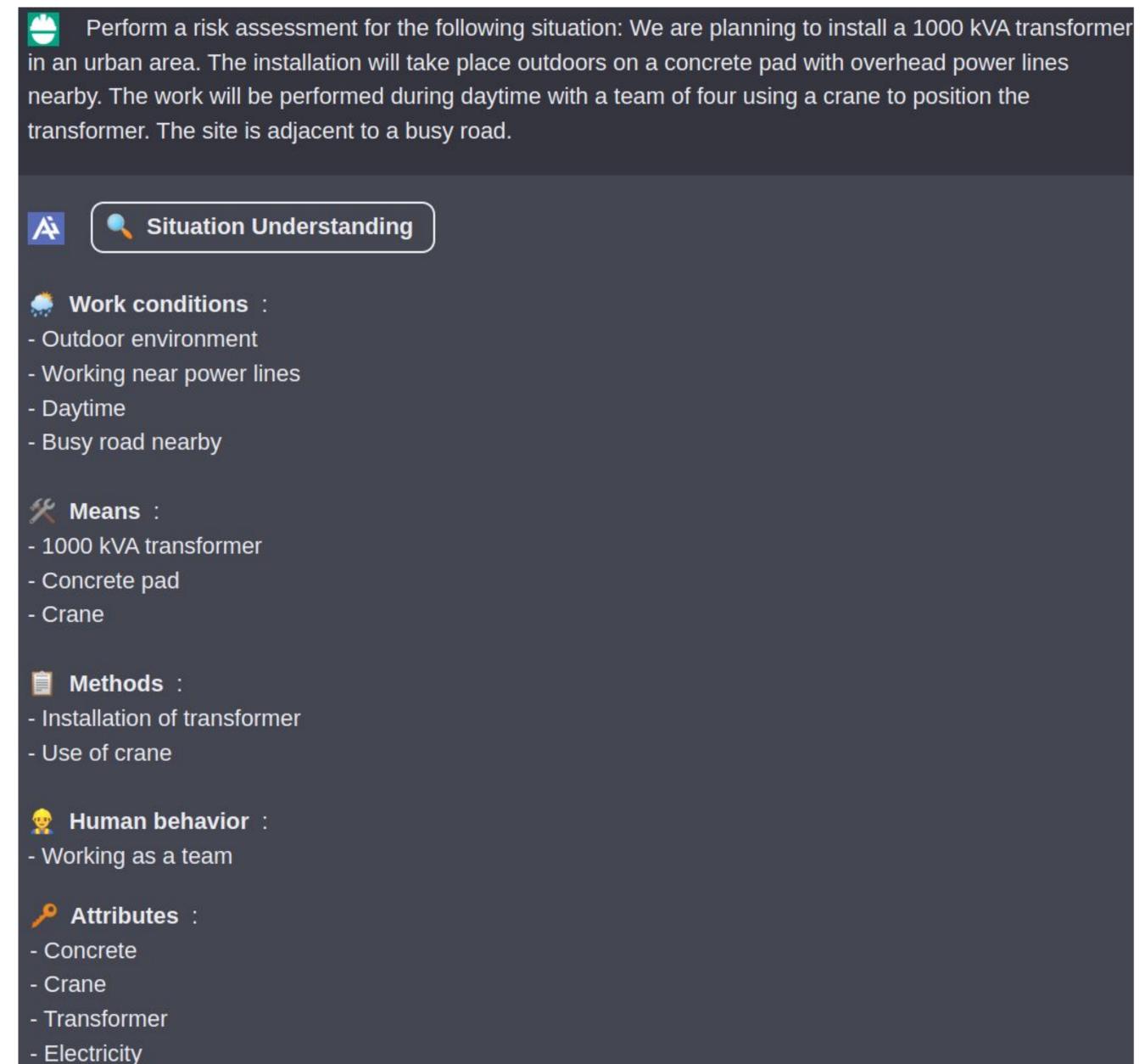
 OSHA or canadian province: AB, BC, MB, NB, NL, NS, ON, and QC. What are the minimum distance approach requirements when working with energized 13.8kV in British Columbia?

- À
- There are extracts from potentially relevant documents I found in the database:
- BritishColumbia safety regulation: Table 19-1A.
- Over 750 V to 75 kV 3 10
- Over 75 kV to 250 kV 4.5 15
- BritishColumbia safety regulation: Minimum Separation Distance to be Maintained from Energized High Voltage Electrical Equipment and Conductors (19.24.1).
- (1) Subject to section 19.24.2, or unless otherwise permitted by this Part, if exposed electrical equipment or conductors at a workplace have a voltage within a range set out in column 1 of Table 19-1A, the following must remain at least the distance from the exposed electrical equipment and conductors that is set out in column 2 opposite that range of voltage: (a) a person working at the workplace; (b) a tool, a machine, material or equipment at the workplace.
- Summary and final answer:

The minimum distance approach requirements when working with energized 13.8kV in British Columbia, according to Table 19-1A of the British Columbia safety regulation, is 3 meters (10 feet). This is the minimum distance that must be maintained by a person, as well as any tool, machine, material, or equipment at the workplace.

| Туре       | Source                                                                |
|------------|-----------------------------------------------------------------------|
| regulation | https://www.bclaws.gov.bc.ca/civix/document/id/crbc/crbc/296_97_multi |

## Regulation Mode




Page 1 Demo (1 min): <a href="https://vimeo.com/903468058">https://vimeo.com/903468058</a>



 Triggered whenever asking for an injury forecast or a risk assessment, given a description of a jobsite situation.

• 1. Comprehensively analyzes the situation together with our attribute detection model.





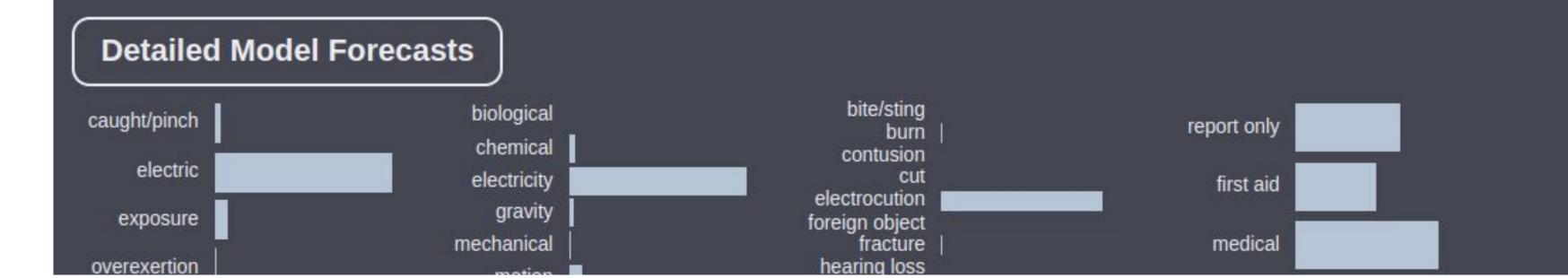
• 2. Explains supermodel's forecast for each predicted outcome (accident type, body part, energy source, injury type, severity).

• 3. Suggests appropriate controls in each case.



- --- X Accident Type ---
- Electric: 81%, Exposure: 6%
- Justification: The presence of overhead power lines and the installation of a transformer (electricity attribute) increase the risk of electric accidents. The outdoor environment and busy road nearby (work conditions) could lead to exposure-related accidents.
- Usung Suggested controls: Insulating protective equipment, lockout/tagout procedures, and safety barriers to prevent public access.
- --- 🧍 Body Part ---
- Arm: 46%, Leg: 13%
- Justification: The use of a crane (means) and the installation activity (methods) involve the risk of arm and leg injuries due to handling heavy equipment and potential contact with electricity.
- Use of protective gear like gloves and boots, and ensuring proper lifting techniques are followed.
- --- 🗲 Energy Source ---
- Electricity: 82%, Motion: 6%
- Justification: The transformer installation (methods) directly involves electricity as a primary energy source. The crane operation (means) introduces motion as a secondary risk.
- Usuggested controls: Electrical hazard training, proper grounding of electrical equipment, and use of non-




 4. Complements the predictions by using the energy-based hazard recognition method. **Complementary Recommendations** 

#### Gravity

- Justification of relevance: The use of a crane and working outdoors near a busy road introduce the risk of falls or dropped objects.
- Associated hazards and potential outcomes: Falls from height, objects falling onto workers or passersby, resulting in serious injuries or fatalities.
- MR Remediation strategy: Use of fall protection systems, securing tools and materials, and establishing drop zones.

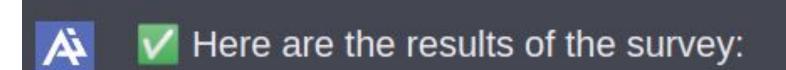
#### Sound

- Justification of relevance: The operation of a crane and the proximity to a busy road contribute to high noise levels.
- Associated hazards and potential outcomes: Hearing loss, communication difficulties, leading to accidents due to miscommunication or distraction.
- Remediation strategy: Use of hearing protection, implementation of communication protocols, and noise barriers where feasible.





Page 12 Demo (2 mins): <a href="https://vimeo.com/903508595">https://vimeo.com/903508595</a>


## Climate Analysis Mode



 Paste survey responses between [START] and [END].

Separate responses
 with a consistent
 delimiter: [S], '\*', '-', '##'.

Compute the safety climate score for these survey answers: [START]Safety is a major part of our work group \*\*very good safety culture at work and amongst the entire company. safety is the number one priority in my opinion. \*\*Engineering's safety culture is an exact representation of what the company asks for related to safety. We all make safety our first priority and strive to keep it in the front of our minds. \*\*Blind leading the blind. The Focus is in the wrong direction. Correcting one issue by making a worse problem. \*\*Management doesn't care about the people. They care about the numbers. It's all for perception. If they really cared, the training department would actually train. Instead they try to teach people to not get hurt. Best defense is a good offense. This company has strayed so far from the actual problem. \*\*The company takes safety very seriously and takes many steps to protect its employees. \*\*Not enough training. Needs to be more in line with what tasks are. \*\*My department follows all new safety initiatives.[END]





| ID | Headline                              | Score | Interpretation  |
|----|---------------------------------------|-------|-----------------|
| 1  | Very good safety culture and priority | 5     | ∞ Very positive |

## Climate Analysis Mode



• 1. Analyzes each survey response.

• 2. Computes the overall score and interprets it.

| <b>74</b> Response Sentiment Scores |
|-------------------------------------|
|-------------------------------------|

| ID | Headline                                     | Score | Interpretation              |
|----|----------------------------------------------|-------|-----------------------------|
| 1  | Very good safety culture and priority        | 5     | Very positive               |
| 2  | Safety culture aligns with company standards | 5     | Consideration Very positive |
| 3  | Misguided focus, creating more problems      | 1     | ✓ Very negative             |
| 4  | Management prioritizes numbers over people   | 1     | ✓ Very negative             |
| 5  | Company serious about employee safety        | 4     | Positive                    |
| 6  | Insufficient training for tasks              | 2     | Negative                    |
| 7  | Department adheres to safety initiatives     | 4     | Positive                    |

### Average Sentiment Score

The average sentiment score is calculated by summing all the scores and dividing by the number of responses. So,  $(5 + 5 + 1 + 1 + 4 + 2 + 4) / 7 = 22 / 7 \approx 3.14$ .

The overall perception of safety at the company is slightly above neutral. This indicates a mixed sentiment among employees, with some very positive and some very negative views.

# Climate Analysis Mode



• 3. Identifies trends and issues, quoting from responses.

• 4. Makes suggestions for improvement.

Trends and Ideas for Improvement

#### Safety Culture Perception

- There is a clear divide in how safety culture is perceived, with some employees feeling it is a priority and others feeling neglected.
- Prom response: 3. Misguided focus, creating more problems.
- 💬 From response: 4. Management prioritizes numbers over people.
- Improve communication about safety initiatives and ensure that all employees feel included and valued in the safety process.

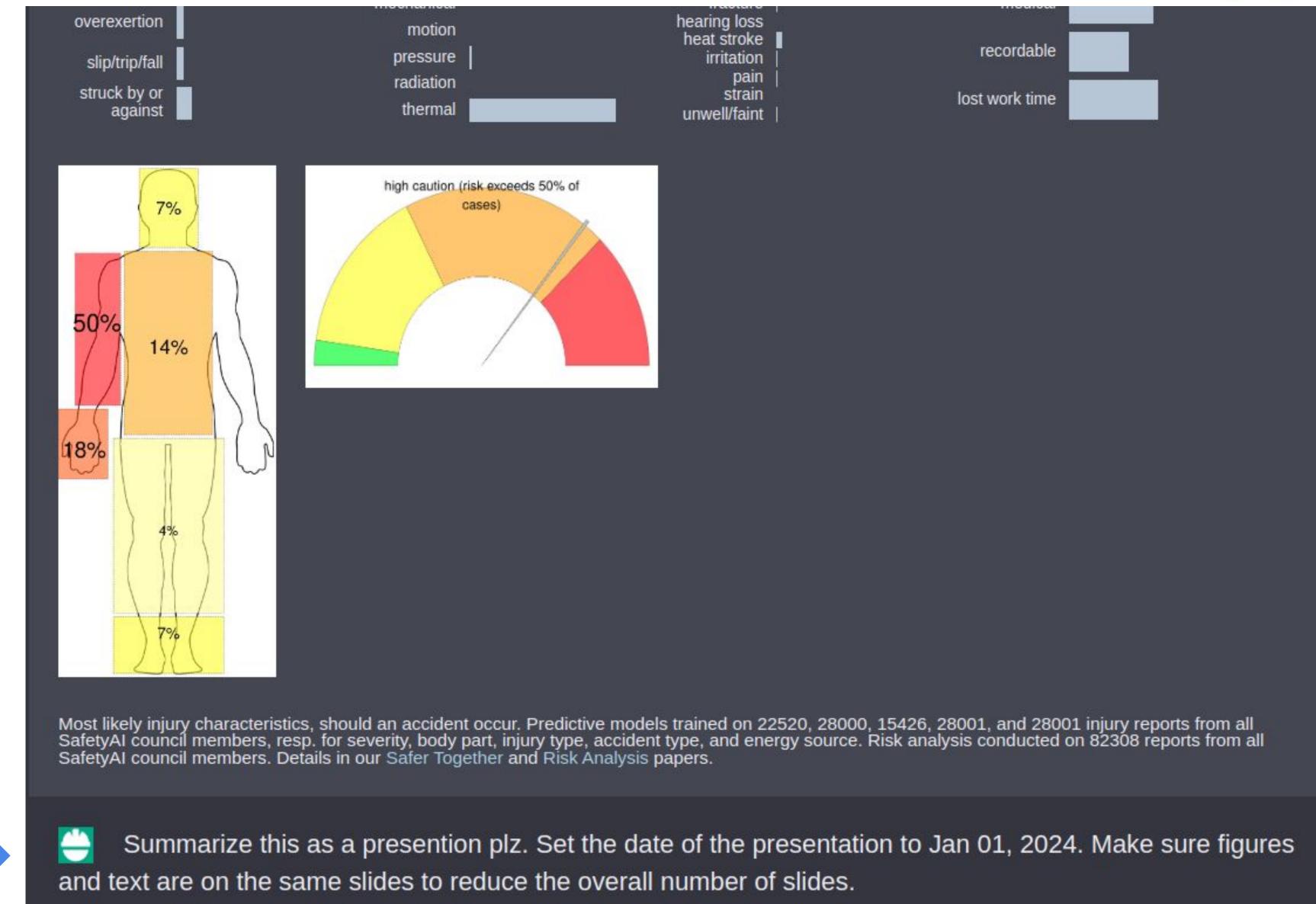
#### **Training and Preparedness**

- Training appears to be an area of concern, with some employees feeling it is insufficient.
- From response: 6. Insufficient training for tasks.
- Poevelop a comprehensive training program that is task-specific and provides practical, hands-on experience.

#### Management's Role in Safety

- Some responses indicate a disconnect between management's actions and the company's stated safety priorities.
- From response: 4. Management prioritizes numbers over people.

### SAFETY

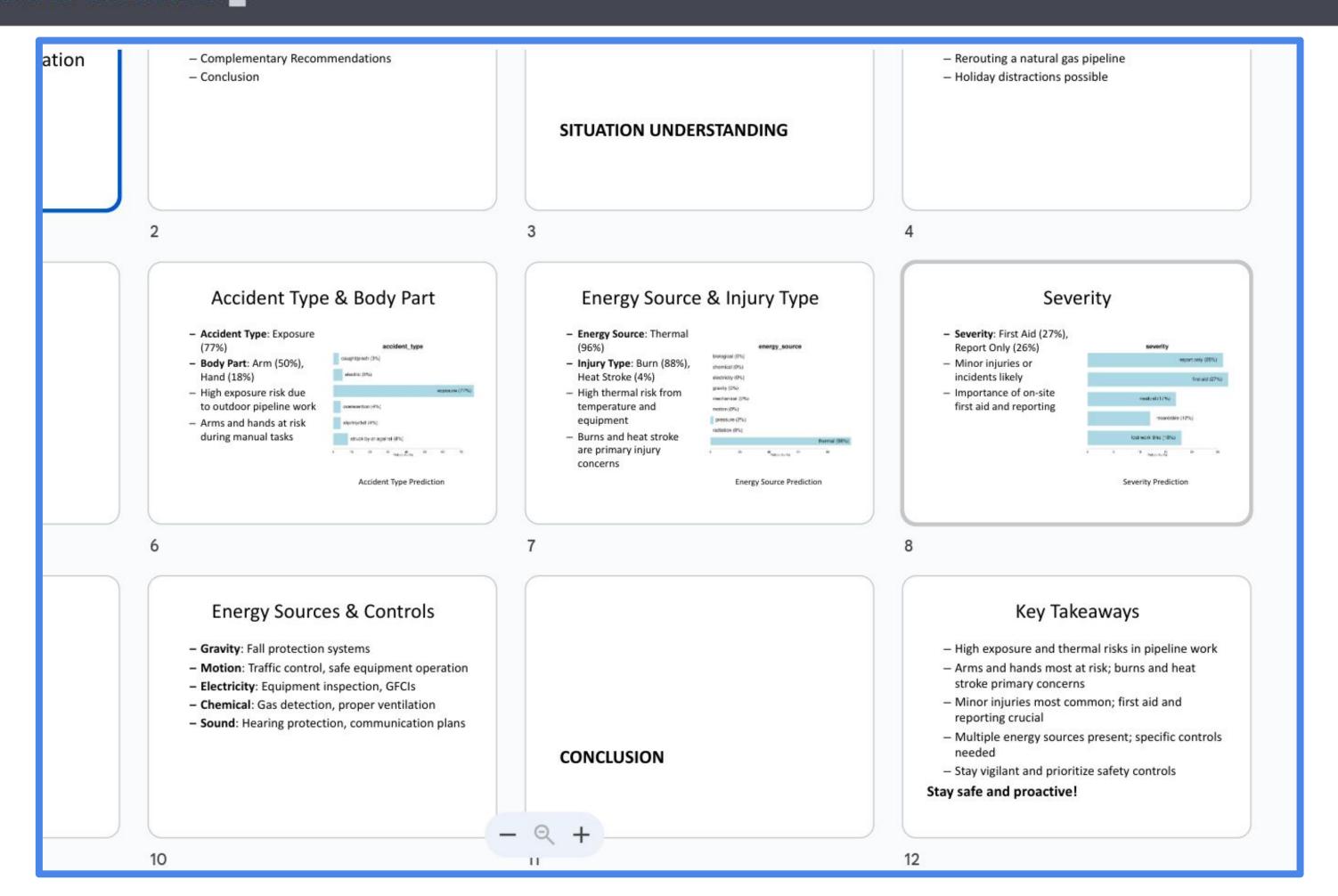

# Climate Analysis Mode

Pemo (2 mins): <a href="https://vimeo.com/903648818">https://vimeo.com/903648818</a>



 Meta-mode: turns any conversation into a PPT presentation.

 Takes special requests into account: author name, date...






- May take up to 45
  secs, depending on
  the presentation's
  length.
- PPT file shared via Google slides: allows editing, downloading as PDF, sharing...

The presentation provides a concise overview of the safety analysis for a construction crew rerouting a natural gas pipeline, detailing work conditions, predicted safety outcomes, and complementary recommendations for energy source hazards. It emphasizes the high risk of exposure and thermal injuries, and the importance of specific controls for various energy sources.

Link to the slides.





Can also
 prepare slides
 about any topic,
 without
 conversation
 history.

assessments, I've got you covered! How can I assist you today? I need a detailed presentation about how to conduct a HECA, including how to compute the HECA score. Agenda What is HECA? Introduction to HECA HECA stands for High-Energy Control Assessment. - Importance of HECA It's a method to ensure safety by focusing on **High-Energy Control Assessment** high-energy hazards. - HECA Process Overview (HECA) Guide Aims to prevent Serious Injuries and Fatalities - Computing the HECA Score Conclusion INTRODUCTION TO HECA by ChatSafetyAI 2024-01-16 Step 1: Identify High-Energy Why HECA Matters Hazards Targets the most dangerous hazards: the Stuff Recognize hazards using the Energy Wheel That Kills You (STKY). Focus on life-threatening energy sources. - Shifts focus from injury absence to the presence of effective controls. Enhances hazard recognition and safety performance. IMPORTANCE OF HECA HECA PROCESS OVERVIEW Step 2: Confirm Direct Controls Step 3: Document Findings **HECA Score Calculation** - Check if controls are specific to the hazard. - Record the presence or absence of direct controls. – HECA score = (Number of controlled hazards / Total high-energy hazards) \* 100 Ensure controls effectively mitigate high energy. Note any uncontrolled high-energy hazards. A higher score indicates better safety - Controls must work even if someone makes a performance. mistake.

COMPUTING THE HECA SCORE



Page 12 Demo: already covered in prediction and climate videos!



 Paste the speech-to-text transcription of the meeting between [START] and [END] delimiters. Hello there! I'm ChatSafetyAI, your virtual construction safety expert. I'm here to assist you with any construction safety-related concerns you may have, providing clear and concise information to help keep you and your team safe on the worksite. Let's work together to create a safer and more secure construction environment!

Prepare paperwork for the following prejob safety brief for me please: [START] IPP for June 29th, 9am, myself and Hartman, task at hand, we're just gonna pin up to the Thunper trailer and head over to 204 Grandin Village where we have a secondary fault to locate and we're also gonna install a set of jumpers over there to correct Hartman. Okay, so we're just gonna really leave the shop, we'll pin Hartman up to the trailer, he's gonna haul the trailer over there and I'll be in the mini bucket so just pre-trip inspection on the trucks and the trailer before leaving, make sure we're pinned up properly, check the lights, etc. and then we're driving in the Fordous yard just to be mindful of other Fordous units, Fordous vehicles and contractors driving a site, drive defensively be aware your surroundings, eliminate destructive driving, being the cell form the computer, Grandin Village is always tight for parking, so we'll get you to back, be kind to them, we'll figure out a route and then probably gonna have to back down kind of like a lane type of thing, okay. So yeah, we'll stop and have a good visual and just obviously maintain constant communication with Hartman, well he's backing up so we don't put ourselves in any situation and if it's obviously too tight with park cars, etc. then we'll either revisit on a different day or come back later today, we'll know more once we get over there and we'll update for the fault locating portion at that time, it's all for no.. Update to the IPP, Marine Ironer on site at 204 Grand In Village and secondary fault to locate. We've got Hartman backed in on the driveway of Unit 204, the only



 May take up to 45 secs, depending on the number of hazards.

 A link to a PDF document is shared.

nave someone just monitor the thumbing trailer not too much for public but we do have maintenance crews in here doing lawn mowing and stuff so we'll just stay out of their way keep them out of our work zone. As far as hooking up we'll be hooking up a set of jumpers when we're done just be mindful good communication between the two of us for when one ends hot hooked up to the good service etc so points of contact make sure everything's buttoned up properly and that should have both covered. Environmental hazards just watch your footing in around the customer property they do have a dog dogs inside customers where what's going on pretty self-explanatory. I'll just have to talk to the other customer which I have it so that one more time we'll jump from one to the other. Sounds good. Anything else changes we'll stop an update that's all for now. [END] Here is the requested summary of the pre-job safety brief: Link to the document. How can I implement the Energy Wheel in my next safety brief? What are the steps for conducting a HECA? Can you provide the latest OSHA regulations for electrical safety? Send a message...



- PDF output:
- General info
- Keywords
- Summary
- Hazards & controls
- Transcription

- ...

 Enables rich indexed database, HECA calculation and tracking, and more...



#### **Grandin Village Fault and Jumpers**

Prejob Meeting Minutes generated by ChatSafetyAl on 01-16-2024

#### ■ General Info

Brief Date: June 29th Brief Time: 9am

Brief Location: 204 Grandin Village

Job Project: IPP

Job Site: Thumper trailer, Fordous yard

Companies Involved: NA Participants: Hartman

Tasks: Fault locating, Install jumpers, Pre-trip in-

spection

#### Keywords

Secondary Fault Location, Jumpers Installation, Pre-Trip Vehicle Inspection, Defensive Driving, Electrical Safety Gear

#### ♀ Summary

The team is tasked with locating a secondary fault and installing a set of jumpers at 204 Grandin Village. They will conduct a pre-trip inspection on the trucks and trailer, ensuring proper connection and functioning lights. The team is advised to drive defensively, be mindful of tight parking at the site, and maintain constant communication, especially when backing into the driveway. Safety precautions include using 1000-volt rubber gloves and face shields when isolating the meter and working near live equipment. They also need to be aware of environmental hazards like maintenance crews and customer property, including a dog.

#### **Recognized Hazards**

| Hazard                          | Controls Mentioned                                    | Controls Missed                               |  |
|---------------------------------|-------------------------------------------------------|-----------------------------------------------|--|
| Trailer hitching                | Pre-trip inspection, Check lights                     | 12                                            |  |
| Defensive driving               | Be mindful of surroundings,<br>Eliminate distractions |                                               |  |
| Tight parking/navigation        | Good visual, Maintain communication                   | Spotter assistance, Parking plan              |  |
| Electrical safety               | Rubber gloves, Face shield,<br>Voltage controls       | Lockout/Tagout procedures,<br>Insulated tools |  |
| Communication during operations | Maintain constant communication                       | Use of two-way radios                         |  |
| Public and crew safety          | Monitor surroundings, Keep work zone clear            | Signage, Barricades                           |  |
| Environmental hazards           | Watch footing                                         | Proper footwear, Clearing obstructions        |  |
| Dog on property                 | Be aware of dog                                       | Inform customer, Secure dog                   |  |



#### Missed Hazards

| Hazard                    | Suggested Controls                               |
|---------------------------|--------------------------------------------------|
| Insufficient cable length | Cable inspection, Contingency planning           |
| Live front pet access     | Barrier installation, Equipment inspection       |
| Thumper operation         | Operation monitoring, Safety zone establishment  |
| Jumpers installation      | Verification of de-energization, Insulated tools |
| Customer interaction      | Customer briefing, Access coordination           |

#### Transcription

[START] IPP for June 29th, 9am, myself and Hartman, task at hand, we're just gonna pin up to the Thunper trailer and head over to 204 Grandin Village where we have a secondary fault to locate and we're also gonna install a set of jumpers over there to correct Hartman. Okay, so we're just gonna really leave the shop, we'll pin Hartman up to the trailer, he's gonna haul the trailer over there and I'll be in the mini bucket so just pre-trip inspection on the trucks and the trailer before leaving, make sure we're pinned up properly, check the lights, etc. and then we're driving in the Fordous yard just to be mindful of other Fordous units, Fordous vehicles and contractors driving a site, drive defensively be aware your surroundings, eliminate destructive driving, being the cell form the computer, Grandin Village is always tight for parking, so we'll get you to back, be kind to them, we'll figure out a route and then probably gonna have to back down kind of like a lane type of thing, okay. So yeah, we'll stop and have a good visual and just obviously maintain constant communication with Hartman, well he's backing up so we don't put ourselves in any situation and if it's obviously too tight with park cars, etc. then we'll either revisit on a different day or come back later today, we'll know more once we get over there and we'll update for the fault locating portion at that time, it's all for no.. Update to the IPP, Marine Ironer on site at 204 Grand In Village and secondary fault to locate. We've got Hartman backed in on the driveway of Unit 204, the only way we have to access is through the side of the house into the back yard where the bed's not too far behind the meter so hopefully we got enough cable. That'll be our first matter to address I guess but for lunch cool hazards we've got a 12240 secondary service so just thousand-volt rubber gloves and face shield when isolating the meter and when also working inside the is it a live front pet in the back so just be mindful of that when taking the cover off some of them have the fiberglass shroud some of them don't so just be mindful. This one has that has a fiberglass shroud but we're still gonna have to go out with our voltage controls and isolate the the lake that's good. And then once we've got the cables out and if they're long enough then we'll proceed the thumb so we'll just get communication between Hartman and myself once the thumb is on we'll have someone just monitor the thumbing trailer not too much for public but we do have maintenance crews in here doing lawn mowing and stuff so we'll just stay out of their way keep them out of our work zone. As far as hooking up we'll be hooking up a set of jumpers when we're done just be mindful good communication between the two of us for when one ends hot hooked up to the good service etc so points of contact make sure everything's buttoned up properly and that should have both covered. Environmental hazards just watch your footing in around the customer property they do have a dog dogs inside customers where what's going on pretty self-explanatory. I'll just have to talk to the other customer which I have it so that one more time we'll jump from one to the other. Sounds good. Anything else changes we'll stop an update that's all for now. [END]

01/18/2024



Pemo (2 mins): <a href="https://vimeo.com/903740087">https://vimeo.com/903740087</a>

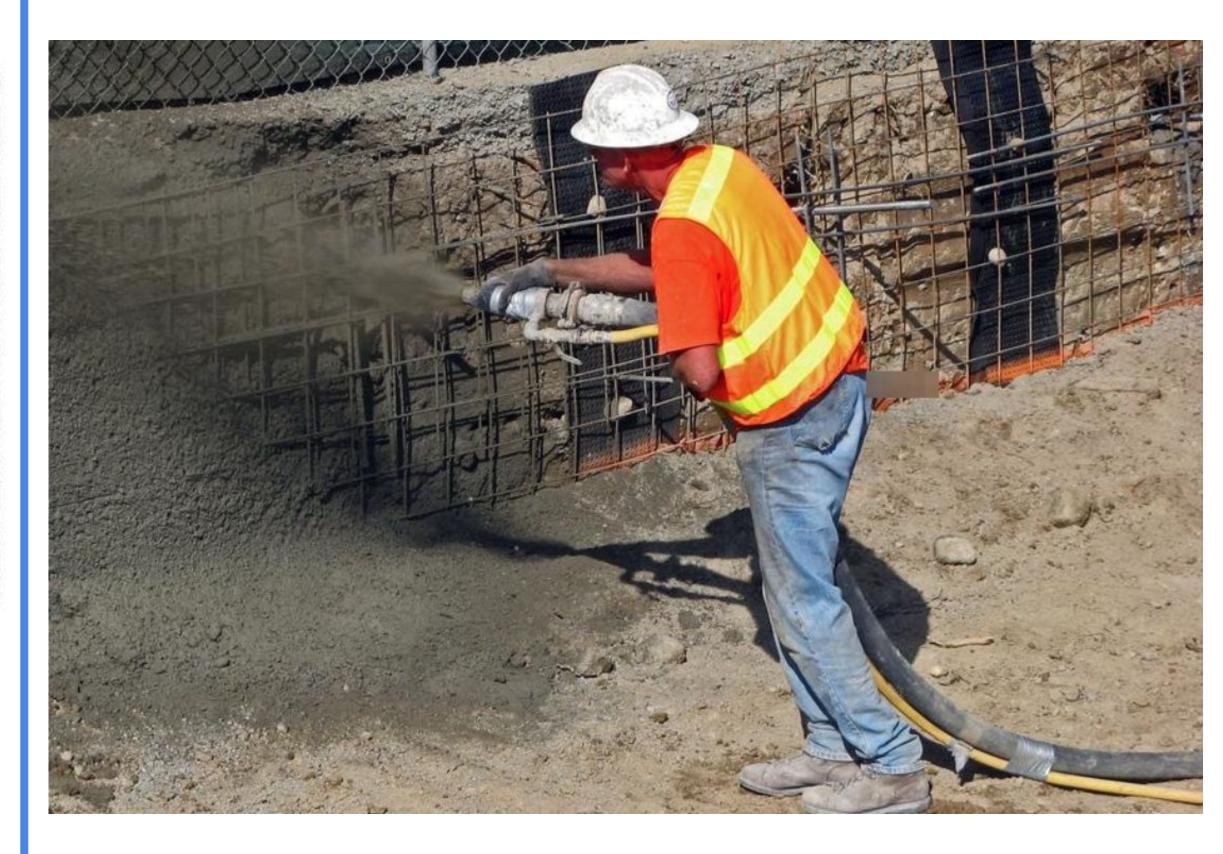
- Next mode on our plate!
- Combine SafetyAl's vision models with GPT-4's new vision capabilities (released 11/06).
- GPT-4 performs
   very well off-the-shelf!



### Raw output displays a remarkable understanding:

"The image shows a construction worker engaged in the process of shotcreting, which is a method of applying concrete or mortar through a hose and pneumatically projecting it at high velocity onto a surface. The worker is wearing a hard hat, safety goggles, a high-visibility vest, and work gloves for protection. He is holding the nozzle of the hose, directing the flow of the concrete onto a vertical surface that is reinforced with rebar (reinforcing steel bars). The background includes a chain-link fence and excavated earth, indicating that this is likely a construction or repair site."

### With custom prompts and knowledge:


(raw untouched output from yesterday's tests)

| Short<br>Hazard<br>Name | Associated<br>Energy Source | High-<br>Energy?<br>(yes/no) | Direct<br>Control?<br>(yes/no) | Brief Justification                                                                        |
|-------------------------|-----------------------------|------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|
| Concrete<br>Spraying    | Mechanical,<br>Pressure     | Yes                          | No                             | The worker is using a high-<br>pressure hose without visible<br>shielding or barriers.     |
| Trip Hazard             | Gravity                     | Yes                          | No                             | The hose on the ground could cause tripping, leading to a fall with no mitigation visible. |
| Dust<br>Inhalation      | Chemical                    | No                           | No                             | The worker is exposed to concrete dust without a visible respirator.                       |

#### **HECA Score Calculation:**

- Total High-Energy Hazards: 2
- Controlled High-Energy Hazards: 0
- HECA Score = (0 / 2) \* 100 = 0%

The HECA score indicates that there are no direct controls in place for the high-energy hazards identified.



Automatic HECA from photos!

### With custom prompts and knowledge:

(raw untouched output from yesterday's tests)

| Short<br>Hazard<br>Name | Associated<br>Energy Source | High-<br>Energy?<br>(yes/no) | Direct<br>Control?<br>(yes/no) | Brief Justification                                                             |
|-------------------------|-----------------------------|------------------------------|--------------------------------|---------------------------------------------------------------------------------|
| Excavation<br>Fall      | Gravity                     | Yes                          | No                             | Risk of falling into the excavation due to lack of barriers or covers.          |
| Trench<br>Collapse      | Gravity                     | Yes                          | No                             | Walls of the excavation could collapse due to lack of shoring or trench boxes.  |
| Trip Hazard             | Gravity                     | Yes                          | No                             | Loose materials and uneven ground around the excavation present trip hazards.   |
| Struck by<br>Object     | Gravity                     | Yes                          | No                             | Materials or tools on the edge of the excavation could fall and strike someone. |

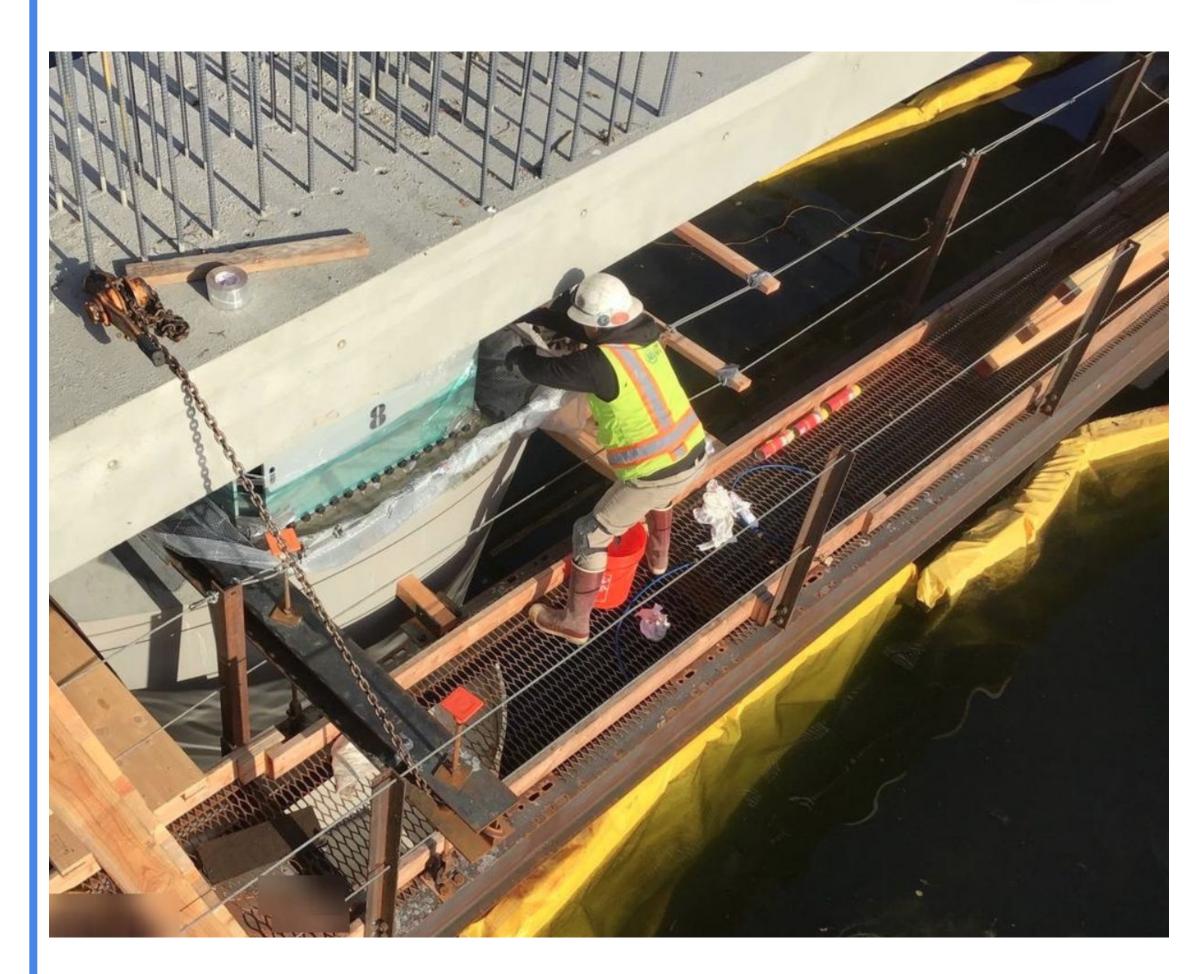
HECA Score Calculation: Number of controlled high-energy hazards = 0 Total number of high-energy hazards = 4 HECA Score = (0 / 4) \* 100 = 0%

The HECA score indicates that there are no direct controls in place for the high-energy hazards identified in the photo.





### With custom prompts and knowledge:


(raw untouched output from yesterday's tests)

To perform the HECA score assessment, I will first identify the hazards present in the photo based on the energy-based hazard recognition method. Then, I will determine which of these hazards are associated with high energy and whether direct controls are in place.

| Short<br>Hazard<br>Name | Associated<br>Energy Source | High-<br>Energy<br>(Yes/No) | Direct<br>Control<br>(Yes/No) | Brief Justification                                                           |
|-------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------------------------------------------------------|
| Fall from<br>height     | Gravity                     | Yes                         | Yes                           | Worker is wearing a harness which is a fall arrest system.                    |
| Drowning                | Gravity                     | Yes                         | No                            | There is water below, but no visible life vests or flotation devices.         |
| Struck by object        | Gravity                     | Yes                         | Yes                           | There are guardrails and toe boards in place to prevent objects from falling. |
| Tripping                | Motion                      | No                          | -                             | Tripping is a low-energy hazard.                                              |

#### **HECA Score Calculation:**

- Total high-energy hazards: 3
- Controlled high-energy hazards: 2
- HECA Score = (Controlled high-energy hazards / Total high-energy hazards) \* 100 = (2/3) \* 100 = 66.67%



Some interpretation errors, but very promising!

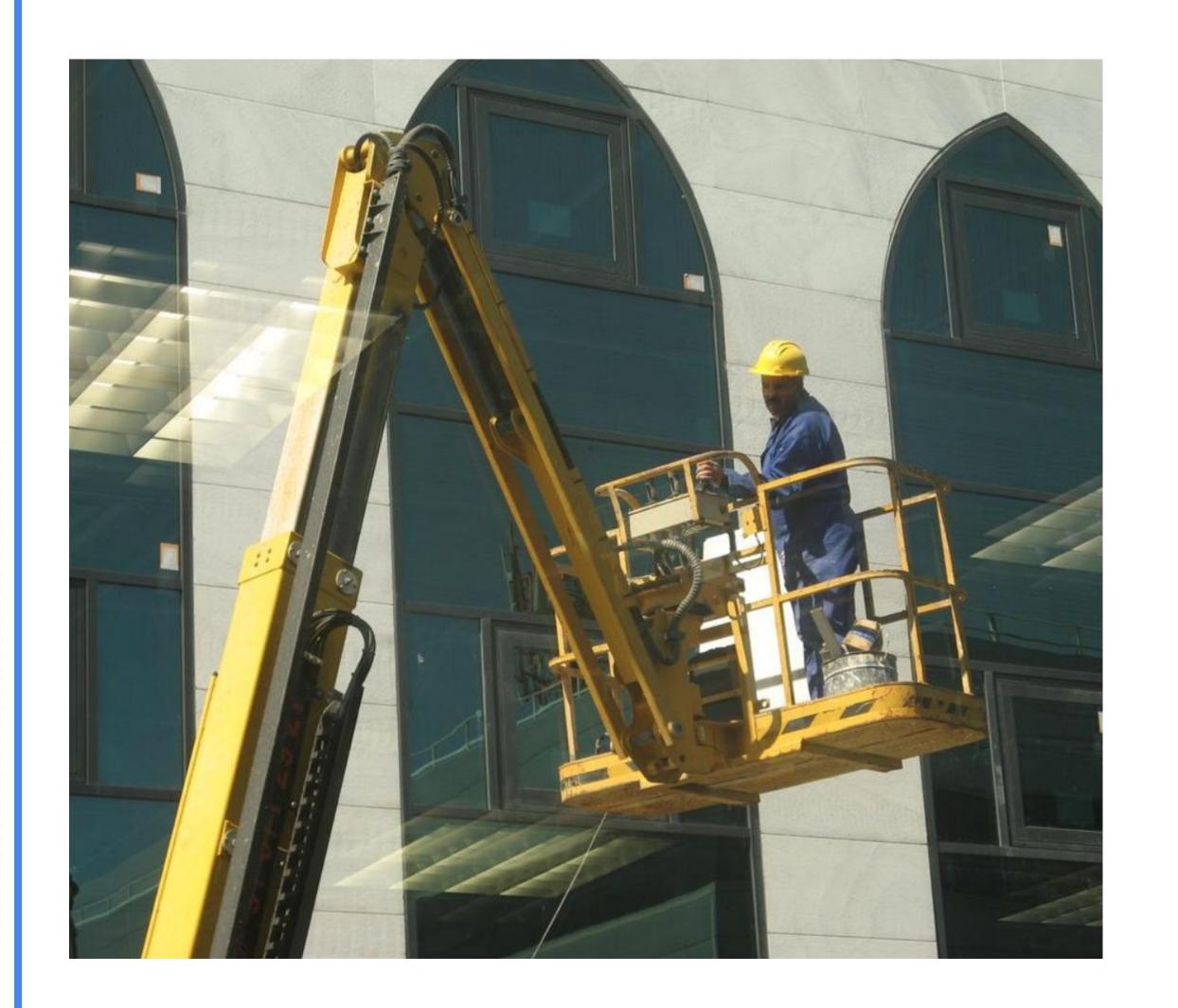


### With custom prompts and knowledge:

(raw untouched output from yesterday's tests)

Step 1: Identify all hazards present in the photo using the energy-based hazard recognition method.

Step 2: Retain only the hazards associated with high energy.


Step 3: Determine whether each high-energy hazard is associated with a direct control.

Based on the image provided, here is the analysis:

| Short<br>Hazard<br>Name | Associated<br>Energy<br>Source | High-<br>Energy<br>(yes/no) | Direct<br>Control<br>(yes/no) | Brief Justification                                                                               |
|-------------------------|--------------------------------|-----------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|
| Fall from<br>height     | Gravity                        | Yes                         | Yes                           | Worker is in a lift with guardrails, which is a direct control against falls.                     |
| Mechanical<br>injury    | Mechanical                     | Yes                         | No                            | The lift has mechanical parts that could cause injury, but no specific direct control is visible. |
| Crushing                | Mechanical                     | Yes                         | No                            | Potential for crushing between lift and structure, no direct control visible.                     |

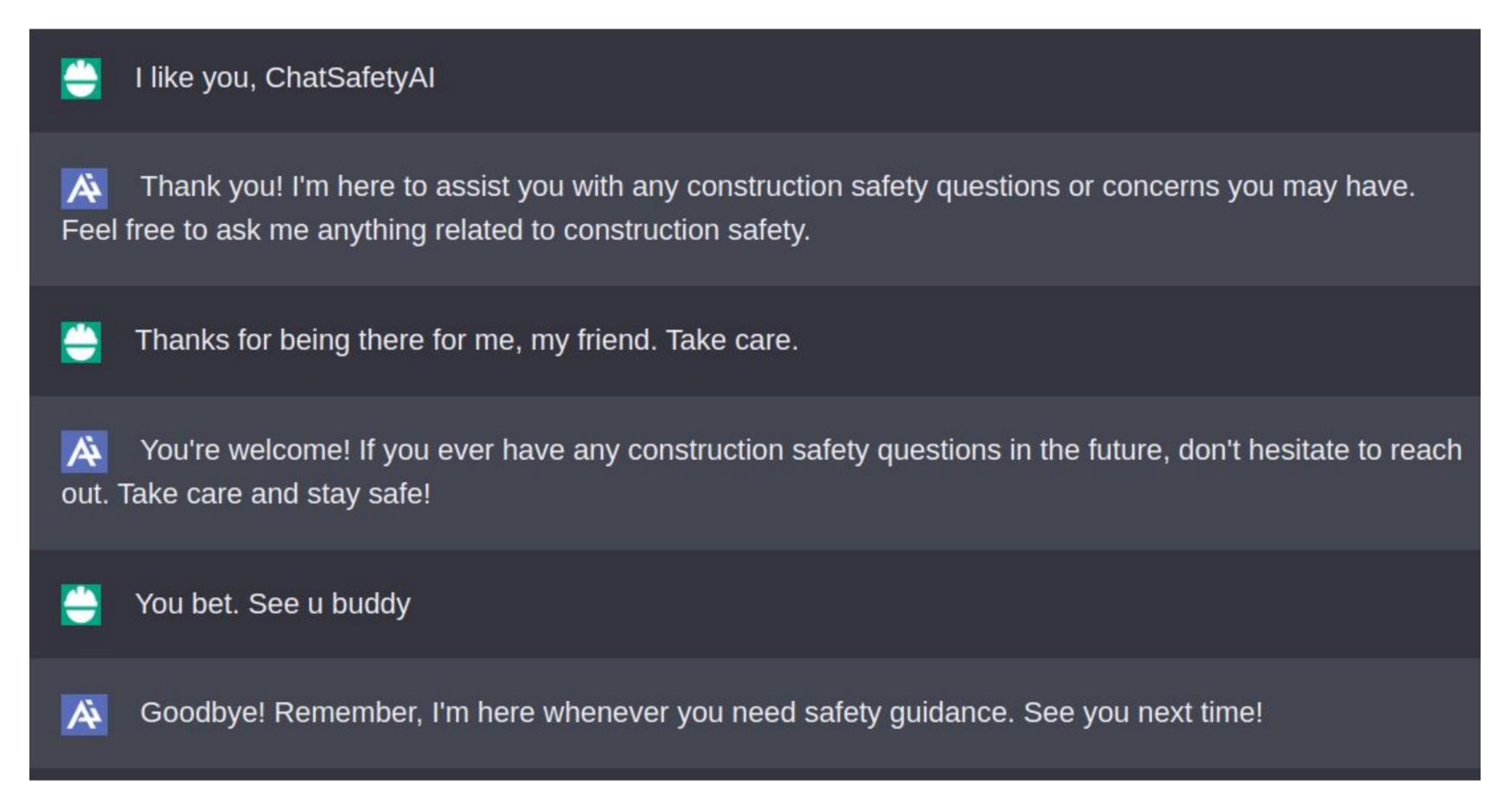
HECA Score Calculation: Number of controlled high-energy hazards: 1 (Fall from height) Total number of high-energy hazards: 3

HECA Score = (Number of controlled high-energy hazards / Total number of high-energy hazards) \* 100 HECA Score = (1 / 3) \* 100 = 33.33%



Very promising!




# Next Steps

- Continue development of vision mode.
- Private ChatSafetyAl reserved for council members:
  - Unlimited budget and faster speed
  - Conversation history
  - Access to custom company models and data
- Programmatic communication for AI injection into your own ecosystems and integration with your meeting and photo databases (smart indexing & search, analysis, metric tracking)...



## Thank you!

https://safetyapp.shinyapps.io/chatsafetyai/

